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represent  a proper point of departure i n  determining the proper t ies  of 

t he  l i q u i d  s t a t e  near the  fusion curve, or at high pressure but  s u f f i -  

c i e n t l y  low temperature, i n  conformity w i t h  the  views of Frenkel. 

t h i s  bas i s ,  Hudleston's equation of state i s  in te rpre ted  physical ly  as 

On 

corresponding t o  a model of independent bond o s c i l l a t o r s ,  with the 

e f f e c t  of anharmonicity f o r  either the s o l i d  o r  l i q u i d  taken i n t o  account 

by means of the Griineisen theory of l a t t i c e  vibrations.  The model y i e lds  

a der ivat ion applying t o  the s o l i d  i n  any event, and va l id  approximately 

fo r  a l i q u i d  e i t h e r  near the  c rys t a l l i za t ion  point,  o r  a t  high pressure 

and low temperature. I n  t h i s  manner, the  two parameters a and P enter -  

ing  the corresponding l a w  of intermolecular force are evaluated i n  terms 

of a cha rac t e r i s t i c  frequency and the G r k e i s e n  constant, respect ively.  

The general izat ion of i iutj ;ests~'s e p a t i m  t.0 include the  e f f e c t  of va r i -  

ab le  temperature i s  given; it includes a correct ion f a c t o r  e s s e n t i a l  t o  

a cor rec t  r e s u l t ,  bu t  not appearing previously i n  the  l i t e r a t u r e .  

Hudleston parameter B 

i s  expressed i n  terms of the Griineisen constant, explaining the  insensi-  

t i v i t y  of t h i s  parameter t o  temperature, as observed experimentally. On 

. 

The 

i n  the equation of state as derived theo re t i ca l ly  
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var ian t  forn; of Hudleston's equation i s  Cierived, which takes ir.T;o account 

coupling of t he  vibrat ions of the atoms o r  molecules. This result i s  

generalized t o  a r b i t r a r y  temperar;u-e a lso .  

mined from the experimental value of B f o r  l i q u i d  mercury i s  compared 

with values infer red  from Griineisen's law and from compressibi l i ty  param- 

e t e r s ,  and reasonable agreement i s  found. F ina l ly ,  an e x p l i c i t  demon- 

s t r a t i o n  i s  given of' the  c lose correspondence between Hudleston's 

equation of state for a l i q u i d  and Bardeen's quantum mechanical result 

for  a so l id ,  i n  the  case of the  a l k a l i  metals near fusion. 

bas i s  of the Debye t h e o r j  f o r  so l ids  2nd an extension t o  li;dids, a 

The Grtheisen constant de t e r -  

INTRODUCTION 

An equation of s t a t e  given by Hudlestonl has been'used with 

(1) L. J. Hudleston, Trans. Faraday SOC., 3, 97 (1933). 

considerable success i n  cor re la t ing  the  experimental data f o r  the  pres-  

sure  vs. the  volume i n  many l i q ~ i d s . ? ' ~  With respect  t o  the i n t e m l e c -  - 
(2)  K. E. B e t t ,  J. Imperial College Chem. Eng. Soc., 1, 44 (1953). 

(3)  K. E. B e t t ,  P. F. Hayes, and D. M. N e w i t t ,  Ph i l .  Trans. Roy. SOC., 

M47, 59 (1954); 

(4) K. E. B e t t ,  K. E. Weale, and D. M. N e w i t t ,  B r i t i s h  J. Awl. Phys., 5, 
243 (1954). 

u l a r  force  l a w  selected,  Hudleston's discussion gives no physical  b a s i s  

f o r  t h e  pa r t i cu la r  ana ly t ic  form chosen, bu t  only for  t h e  argument of the  

function. The purpose of t h i s  paper i s  to  explain the  success of the  
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corresponding equation of s ta te  by obtairLrit; i t  €;om a dei'initc physical, 

model. A var ian t  form i s  derivc.4 which has c e r t a i n  t h e o r e t i c a l  sdvantages. 

The basis of the theore t ica l  discussion is the Griineisen theory of 

l a t t i c e   vibration^.^,^ The success of t h i s  theory i n  explaining the 

( 5 )  E. Griineisen, "Handbuch der Physik," Vol. X, Verlag J u l i u s  Springer, 

Berlin,  1926, pp. 1-59. 

(6) J .  C.  S l a t e r ,  "Introduction t o  Chemical Physics, " McGraw-Hill Book 

Co., Inc., New York, N.  Y . ,  1939, pp. 201, 222, 238, 394, 451. 

thermal expansion of so l ids  as the resuLt of anharmonicity of the charac- 

t e r i s t i c  o s c i l l a t i o n s  i s  w e l l  known. However, Hudleston's equation has 

been t e s t e d  experimentally only f o r  l iqu ids .  Since appl icat ion of the  

Grlineisen theory t o  a l i q u i d  involves an extension of i t s  domain of 

v a l i d i t y  as usual ly  understood, a prefatory discussion of the  grounds 

f o r  t h i s  extension will be given. 

THEORETICAL BASIS 

I n  Mayer's theory of c l u s t e r  integrals ,  the d i s t r i b u t i o n  f o r  which 

a very l a r g e  f r a c t i o n  of d l  the molecules are i n  one c l u s t e r  corresponds 

t o  the  l i q u i d  state.7 The c l u s t e r  integral. f o r  t h i s  d i s t r i b u t i o n  is  far 

(7) J. E. Mayer and M. G. Mayer, " S t a t i s t i c a l  Mechanics," John Wiley and 

Sons, Inc. ,  New York, N. Y. ,  1940, Chapters 11, 13,  14. 

i 

~ ~~~~~ ~~ ~- 

too complicated t o  be evaluated d i r e c t l y  (and i n  any event t h e  correspond- 

i n g  s e r i e s  diverges a t  the  l iquefact ion poin t ) .  Severe ca lcu la t iona l  

h 
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(8) 1,:. 3orn and H. S. Green, "A General K l m t i c  Tneory of Liquids," 

Cambridge University Press , C a r A r l C Z e ,  1949. 

(9) R. W. Swanzig, J. G. KirXwood, it. 3'. Str ipp,  and I. Oppenheim, 

J. Chem. Phys., - 21, 1268 (1953). 

near t he  c rys t a l l i za t ion  point. A s  a consequence, r e s o r t  commonly i s  

made t o  free-volume or  t o  l a t t i c e  theories (of the c e l l  o r  hole  type) 

f o r  a l i qu id .  lo These methods e n t a i l  underlying approximations r e s t r i c t i n g  

(10) J. 0. Hirschfelder, C .  F. Curtiss,  and R. B. Byrd, "Mlecular  Theory 

of Gases and Liquids," John Wiley and Sons, Inc. ,  New York, N.  Y., 1954, 

Chapter 4. 

t h e i r  range of va l id i ty ,  the prec ise  natufe of which has been elucidated 

by Kirkwood. 

(11) J. G. Kirkwood, J. Chem. Phys., - 18, 380 (1950). 

I n  these circumstances, one can suggest that a proper point  of 

departure i n  determining the propert ies  of the l i q u i d  state near the 

fusion curve i s  the s t a t i s t i c a l  mechanics of the  so l id .  This viewpoint 

has been s t ressed  pa r t i cu la r ly  by Frenkel.12 He points  out  t h a t  fusion 
~ ~ ~~ ~~ 

(12) J. Frenkel, "Kinetic Theory of Liquids," Oxford University Press,  

Oxford, 1946, Chapter 111. 

i s  accompanied by only a r e l a t i v e l y  s m a l l  increase of volume, showing 

t h a t  t h e  arrangement of the molecules i n  a l i q u i d  near i t s  s o l i d i f i c a t i o n  

po in t  must be similar t o  the arrangement i n  the  corresponding so l id ,  as 

regards nearest  neighbors. Further, the  spec i f ic  heat  capacity of a 



l l y u l d  i s  only s l i g h t l y  greatcr  t ~ a r  tks;, 0-' i., I solie, i n  geEel-ai. 

F'Lnally, the l a t e n t  heat of ; ' U S ~ C Y L  I z  nuch szl2ller thzn the l a t e n t  heat 

of vaporization. More Important i s  a facz not noted by Frenkel, that  

the l a t e n t  heat  02 fusion 9 s  small re lacive t o  the cohesive energy of 

the  so l id .  These f a c t s  imply t h a t  the cohesive forces  between the 

molecules decrease only s l i g h t l y  a t  fusion, corresponding t o  the  very 

s l i g h t  amount by which the average dlstance apa r t  of the  molecules i s  

increased. It follows that near the s o l i d i f i c a t i o n  point,  the  free 

energy of the l i q u i d  must be s imilar  i n  ana ly t i c  form t o  t h a t  of the 

so l id ,  as well  as numerically equal  i n  the case of the Gibbs free energy. 

The conclusion follows tha t  the equation of state of a l i q u i d  near the  

melting point must be c lose ly  s imilar  t o  tha t  of the corresponding so l id .  

This important conclusion w i l l  be demonstrated d i r e c t l y  from equations 

of s t a t e  i n  the  penultimate sect ion.  

The general  contentions of Frenkel are supported by the  evidence 

from s t ruc tu re  analyses by X-rays of l i q u i d s  and so l id s  near the fusion 

temperature. 

Gurry.13 

These data  have been summarized conveniently by Darken and 

The over-al l  results of these experiments point t o  a lo s s  i n  

(13) L. S. Darken and R.  W. Gurry, "Physical Chemistry of Metals," 

NcGraw-Hill Book Co., Inc. ,  New York, N. Y. ,  1953, Chapter 5 .  

the  l i q u i d  near the so l id i f i ca t ion  point of the long-range order charac- 

t e r i s t i c  of the s o l i d  but with preservation of a considerable degree of 

short-range order. 

two phases which leads t o  the close correspondence between many thermo- 

dynamic quant i t ies .  Only a quantity, such as the  r i g i d i t y ,  which depends 

It i s  the s imi la r i ty  i n  the short-range order i n  the 
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two phases (even in this case grad&ttior,s are possible,  corresponding to 

the existence of the visco-elastic s o l i d ) .  In general, one expects the 

similarity of the liquid and solid to hoia approximately so long as the 

coordination number has a well-defined mzning. 

From the standpoint of quantum mechanics, one can consider the total 

wave function decomposable in SOLE sense into contributions from individ- 

ual atoms. For a particular atom, tie presence of long-range order in 

the solid will result in only small overlap of its wave function with 

those for distant atoms. Thus, a quantity like the internal energy will 

be sensitive mainly to the near-neighbor atoms involved in the short- 

range order, where the overlap of the wave functions is significant. 

Because of the small change in linear dimensions at fusion, the degree 

of overlap of wave functions must be very similar for the two phases. 

This argument applies in the first instance at the fusion point, but 

clearly implies that a liquid at high pressure but sufficiently low 

temperature with state coordinates considerably removed from the fusion 

curve also behaves thermodynamically in a manner similar to a solid. 

It is worthy of note that the correspondence between thermodynamic 

functions f o r  the two phases near the melting point can be extended to 

t . ra~sp~rt .  ~ r ~ p r t t e s  R ~ S Q  ~ 

fusion has been discussed theoretically by Mott14 and the viscosity of 

m-p cha.nge in electrical conductivity at 

(14) N. F. Mott, Proc. Roy. SOC., ~146, - 465 (1934). 

liquids near the melting point has been treated by Andrade,” taking 

(15) E. N. da C. Andrade, Proc. Roy. SOC., A211, - E? (1952). 
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i - p n y r t P e s  of the solid as a lxlr-t  c: depart;-c. ,_ot'r. ELLOT: Losume 

that the atom (or molecules) 01' a IiquiC; i-lt:ate about nean po;: ,cons 

which are not fixed, as in a so;li, but ;cvc with a veiocity s r L L  com- 

pared to the velocity of vibr-crtlor.. As a legitimate first approximation, 

therefore, both authors assume that the wllrt velocity of the equilibrium 

positions vanishes, which is tantamount to viewing the liquid as a solid 

in the sense of the GrKneisen theory, witn respect to thermal excitation. 

Mott evaluates the characteristic frequency of the liquid by regarding 

it as an amorphous solid on the Debye theory, and obtains a result for 

the change in electrical conductivity at fusion which is in good agree- 

ment with experiment, in general. 

the characteristic frequency of the liquid as the Lindemann frequency 

appropriate to the solid at melting, to yield a result which represents 

reasonably the viscosity of a liquid near the melting point. 

On the other hand, Andrade identifies 

The following derivation of Hudleston's equation applies to a solid 

in the first instance. The extension to a liquid rests broadly on the 

general principles enunciated by Frenkel and the discussion above, and 

specifically on the Jnodels of Ibtt and Andrade. Thus, the atoms are 

assumed to vibrate as in a solid, with the centers of vibration fixed, 

as a first approximation. The derivation proceeds by evaluating the 

energj- r z y i k e d  t c  e c ~ r z s s  the bc<;r ggeinst. t.he restoring force of these 

oscillators at zero temperature. 

explicit expression for the free energy, the effect of variable tempera- 

ture in Hudleston's equation is determined by means of a phenomenological 

Since this method does not yield an 
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necessary tha t  the frequency spec tnm OS a l iq i l id j i s  of Debye form i n  

the sense of Ibtt’s approximation. The treatment given goes beyond the 

approximations of Nott and funciraie, i n  the  sense t h a t  a-nharmonicity of 

the cha rac t e r i s t i c  vibrat ions of’ the l i q u i d  i s  taken i n t o  account on the  

bas i s  of the Griineisen theory. 

Note tha t  the c e l l  nethod has points i n  c o m n  with the  Debye 

theory o r  the  corresponding Einstein form applied t o  a l i qu id ,  as 

discussed by Mayer and M a ~ e r . ~  

HUDUSTON’S EQUATION 

Hudleston postulates  a repulsive force  f between two m l e c u l e s  as 

(1) 
P ( r0 -4 f = a(ro - r ) e  

where ro 

r, and a and P are pos i t ive  constants spec i f i c  t o  the  material. For 

a cubical specimen of edge length  L, the  pressure P is  proportional 

t o  f/L2. I n  the literature, the  corresponding equation of state 

i s  the  value a t  zero pressure of the  i n t e r m l e c u l a r  dis tance 

geiier&pj- q ; e m s  8s 

where LO i s  the  value of L f o r  zero pressure, and A and B are 

pos i t i ve  constants. The parameter A can be evaluated as 
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( 3 )  i A = logi,(3LoYwj 

i n  ter,m of the bulk modulus :\j 'or zero pressure.  Note t h a t  the  

values of the  Kudleston paraneter; A and 3 i n  eq. 2 depend on tfie u n i t s  

used for P and L. However, the fo>.ner var iables  en ter  a l i n e a r  form 

equated t o  a logarithmic function whose argxnent i s  not dimensionless, 

and hence d e f i n i t e  dimensions cannot be asstgned t o  A and B on the  

bas i s  of eq. 2. It i s  common i n  the l i t e r a t u r e  t o  evaluate the length  L 

i n  terms of the cube root  of the r a t i o  t o  a reference value of the volume 

a t  a p a r t i c u l a r  pressure and temperature, by a procedure which amounts 

t o  regarding L (and Lo) as dimensionless, i n  which case A and B can 

be viewed as dimensionless also.  I n  s p i t e  of these d i f f i c u l t i e s ,  eq. 2 

has the  merit t h a t  the parameters A and B can be determined r e a d i l y  i f  

a p l o t  of the data  corresponding t o  the  two s ides  of the r e l a t i o n  y ie lds  

a s t r a i g h t  l i n e .  

The discussion given by Hudleston was frankly semi-empirical. Thus, 

he f a i l e d  t o  state whether or not heregarded  r and ro i n  eq. 1 as 

thermal averages. 

between the molecules, nor of the f a c t  that  f of eq. 1 reverses s ign  

when r exceeds roe 

Further, he made no mention of an a t t r a c t i v e  force  

CASE OF ZERO TE3IRXATURE 

To understand HudLeston's results, consider the  molecules of the  

l i q u i d  o r  atoms of the s o l i d  a t  zero temperature as in te rac t ing  i n  p a i r s ,  

and assume t h a t  each such p a i r  is independent. 

each bond w i l l  have a charac te r i s t ic  frequency 

The two molecules i n  

v whose var ia t ion  with 
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s p e c i f i c a l l y  for  a s o l i d  and by extcasior, f o r  8 l i q u i d .  

the var ia t ion  with respect t o  vol.urrie of the frequency of an o s c i l l a t o r  

i s  then given by the def in i t ion  4 as 

To f i r s ;  order, 

v = v o [ l  + @lo - v)/vol ( 5 )  

where vo and y o  

evaluated a t  the volume Vo 

sure .  Using reduced coordinates, one can then express the  p o t e n t i a l  

energy u 

as the  truncated Taylor series’’ 

a r e  the frequency and Griineiser, parameter, respect ively,  

corresponding t o  zero temperature and pres- 

of a bond o s c i l l a t o r  of variable  frequency (and force constant)  

(18) J .  J .  Gilvarry, Phys. Rev., 102, - 331 (1956). 

i n  terms of the intermolecular distance r, i f  m i s  the mass of a 

molecule. 

A t  s u f f i c i e n t l y  low temperature, the  mean thermal energy ( p o t e n t i a l  

mC? ki_~?et.Lc)) n f  an o s c i l l a t o r  becomes small r e l a t i v e  t o  u of eq. 6, 

provided t h a t  the zero-point energy can be ignored i n  comparison with 

The last  condition i s  met f o r  only very s l i g h t  compressions, s ince 

e n t e r s  the  zero-point energy l i n e a r l y  but appears i n  eq. 6 quadrat ical ly .  

Hence, eq. 6 represents the t o t a l  energy associated with a bond i n  t h i s  

case. 

u. 

vo 

Since the discussion at t h i s  point  i s  r e s t r i c t e d  t o  the case of 
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on d i f f e r e n t i a t i o n .  From Hudleston's expression 1, one obtains 

f = a(ro - r ) [ l  i- P(ro - r ) ]  ( 8 )  

for 

terms through l i n e a r .  Comparison of the two results y ie lds  

ro - r s m a l l ,  by expansion of the exponential and r e t e n t i o n  of 

( 9 )  a = 2n mvo 

3 = ~ Y o / ~ o  (10) 

2 2  

which provide a physical in te rpre ta t ion  of the HudJ-eston parameters 

a and 9 i n  terms of the  frequency y o  and Grcneisen parameter yo ,  

respectively.  Thus, Hudleston's model corresponds t o  representing the 

l i q u i d  o r  s o l i d  as an assemblage of independent anharmonic o s c i l l a t o r s .  

Rote tha t  the spring forming a bond is  nonlinear, s ince t h e  force  con- 

s t a n t  increases with compression, i n  agreement with the sense of the  

var ia t ion  predicted by the  Grzneisen theory. 

The change i n  energy E a t  zero temperature of the  compressed 

s o l i d  o r  l i q u i d  from i t s  value f o r  zero pressure can be expressed as 
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. _, _ _  ._ I‘: i s  %he nur?Der 0:  at^;:^ c.r :::olecdea. The coclPicient of u i s  

necessar l ly  3X, since each o. ;c i l l&. to~  i:iu:-~i;’,zr7~ a geaeralizeC coordinate 

q = ro - r t o  describe a bocd, arid 3?: 1; :k: ::u::’oer of degrees of f r e e -  

dom ( i n  the absence of nolecular r o t a t i o n ) .  

i n  terms of the correcpondinc n.olc!cular c,cpnrnt:i.ons 3-5 

The volumes can be u r i t t e n  

V = eNr3 

Vo = eTLTro 3 

where c i s  a constant. For so l ids ,  c i s  uni ty  for a simple cubic l a t -  

t i c e ,  and values for other  l a t t i c e  types have been given by Slater.‘ 

the case of a l i q u i d ,  c 

nunib e r  . 

I n  

obviously depends on the average coordination 

Dif fe ren t ia t ing  eq. 11 w i t h  respect t o  volume, one obtains 

as the  dominant contribution t o  the pressure, t o  be m l t i p l i e d  by the 

correct ion f a c t o r  

corresponding t o  the e f f e c t  of anharmonicity. The bulk modulus a t  

normal volume appears i n  eq. 1 4  by v i r tue  of the  expression 

(16) - (31/ilC1/3 ~ 1 / 2 ~ ) ~ - 1 / 2  1/6 1/2 
vs - / vo K, 

wherc vo i s  the normal volume per atom o r  molecule. The r e l a t i o n  16 

0:’ Gilvarry” i s  e s s e n t i a l l y  equivalent t o  the c h a r a c t e r i s t i c  frequencies 



One observes that t'ne Tina1 rcsiiit for t;le 2rezsure is independent of the 

constant c of eq. 12 and 13, which depends on details of t'ne structure 

of the particular solid o r  l i q u i d .  if 3 is set equal to zero in 

Hudleston's equation, use of eq. 3 for 2. 

one notes that L is proportional to v1i3. 
ylelds eq. 14 directly, when 

Replacing the multiplicative correction factor 15 by the exponential 

which coincides with it through lifiear term, one derives 

as the fornulation of Hudleston's equation in terms of P and V, rather 

than P and L. 

zero, eq. 17 is valid when P and V 'are understood as theraal averages. 

The derivation is rigorous on the basis of eq. 6 for the energy of an 

oscillator, apart from the mathematical artifice of replacing a linear 

form by an exponential. 

constant yo  

a Gr'beisen parameter only if the form 17 is fitted to data corresponding 

to the neighborhood of the energy minimum for the solid. If it is fitted 

to data spanning a large range of pressure, y o  

For any temperature negligibly removed from absolute 

As a consequence of this approximation, the 

appearing in the exponential can be strictly identified as 

becomes an average 



(21) J. J. Gilvarry, Pnys. Rev., - LO2 325 (L>S,-i. 

Thus, the  constants 

can be evaluated graphically as sirr.ply as Tor the case of eq. 2. 

K, and y o  of  the :iucil.eston equation i n  the form 17 

It has been shown by Druyvesteyn m d  Keyering22 and by Gilvarryl' 

(22) M. J. Druyvesteyn and J. L. ;.:eyering, Physica, - 8, 851 (1944). 

that; the Griineisen parameter 7 

p a i r s  of bond o s c i l l a t o r s  i s  given i n  the general case by 

for a s o l i d  (or l i q u i d )  of independent 

y = - 2 [ ( a  2n K/a 2n V ) T  + 11 (19)  

where K i s  the bulk modulus and T' i s  the  absolute temperature. 

Application of t h i s  result t o  the general formulation 17 of Hudleston's 

equation y ie lds  

l i m  7 = yo 
P+ 0 

i n  the l i m i t  of zero pressure, consis tent ly  with the conclusion t h a t  the  

constant y o  can be i d e n t i f i e d  with the GrEneisen constant only f o r  com- 

pressions i n  the neighborhood of the energy minimum fo r  the  body. Thus, 

t h e  r e s u l t s  agree with the i d e n t i f i c a t i o n  of the  correct ion f a c t o r  15 as 

represent ing the e f f e c t  of anharmonicity on the  pressure i n  t h e  



Coaparison of eq. 2 and 17 y i e l c s  

for the Hudleston parameter S in terns of tile Grzneisen parameter yo 

of t'ne solid or liqaid. By clixinating Lo between eq. 3 and 21, one 

obtains the expression 

for t'ne GrEneisen constant in term of the Hudleston parameters and the 

bulk modulus. 

ality of A and B, eq. 22 is essentially a numerical relation, and one 

cannot verify directly that it i s  consistent with the dimensionless char- 

acter of yo .  However, if L and Lo in eq. 2 are assumed dimensionless 

(as is frequently done), then 

and use of eq. 3 yields the simple relation 

Because of the difficulty already noted in the dimension- 

B can be viewed as dimensionless likewise, 

which is dimensionally correct. 

it has been emphasized that Hudleston's equation corresponds 

phystcally to a body composed of independent bond oscillators. As such, 

an artificial element enters the model, since it corresponds essentially 

to an Einstein sol id .  It is a matter of some interest to determine the 

form of the corresponding equation when coupling of the atomic or molec- 

ular oscillations is included. 

simple manner by m e a n s  of the Debye model, in which the effect of the 

Coupling can be taken into account in a 



as a continuum) .7,13 In term of elesti: :;;c;-z,:::eters , the GrGneisen 

parameter on the Debjre tLeory i s  i;lvez 5;- i _ _ c  .:inter re la t ion6  

which d i f f e r s  from eq. 19 Yor a nodel of LrLdependent bond o s c i l l a t o r s .  

Equating th i s  expression t o  zero, one ob-cains 

as the corresponding equation of s t a t e  of  an i d e a l  harnonic body, con- 

ta in ing  no anharmonic contribution to  t h e  pressure; the corresponding 

G r k e i s e n  constant i s  i d e n t i c a l l y  zero a t  any pressure on t h e  basis of 

t h e  derivation. One v e r i f i e s  e a s i l y  t h a t  inclusion of the mul t ip l ica t ive  

correct ion f a c t o r  15, w i t h  yo a constant, yields  the  result of eq. 20 

a t  zero pressure when eq. 24 i s  applied. 

correct ion f a c t o r  by the exponential which agrees with it through l i n e a r  

The a r t i f i c e  of replacing the  

terms gives 

as t h e  analog of Hudleston's equation f o r  the case where the e f f e c t  of 

coupling of the  o s c i l l a t i o n s  of the atoms o r  molecules i s  included i n  

t h e  model. 

i n  r e l a t i o n  t o  the original. equation as a many-body theory does t o  an 

indepeniient-particle model. 

Thus, the generalization 26 of Hudleston's equation s tands 
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( 2 3 )  T'ne two expression; agree t;.x;;h t r t s  of orde;- (Vo - V)/Vo 
view of the definition 02 the bulk ~:xh1ix, and hence the difference 

in 

appears in term of orcier [ (v0 - v)/vo12. 
~ ~ ~~ 

experimental data over that provice6 by IiuCdeston's equation is a moot 

question. However, eq. 26 without the exponential factor coincides in 

form with that obtained by 14urnaghan f ron the linear theory of finite 

strain.2' He found that the expression yielded excellent agreement with 

(24) F. D. Murnaghan, "Finite Deformation of an Elastic Solid," John 

Wiley and Sons, Inc., New York, N. Y., 1951, Chapter 4. 

experimental data for both solids and liquids. Note that the constants 

and yo  in eq. 26 can be evaluated graphically by writing it in a 

form analogous to eq. 18. 

One can observe that the pressure as given by eq. 14 and 25, 

without the correction factor 15, yields a vanishing contribution to 

the Grkieisen parameter at zero pressure, consistently with the fact 

that these forms cur-i-espciid ts t h z  k z r m n ~ l c  contribution to the pressure. 

Hence, in view of Grzneisen's law 

7 = am/cv (27 1 

lor 7 in terms of the thermal expansion coefficient a (where CV is 

the heat capacity at constant volume) the results are consistent with 



CME OF FIITITE TEQER4TJRE 

It i s  c l e a r  that  the preceaing discassion does not y i e l d  an e x p l i c i t  

expression for the Helmholtz f r e e  energy of the s o l i d  or liquici. This 

l a c k  could be remedied by using the general  results of the Griineisen 

t'neory of s o l i d s  t o  include a thermal contribution t o  thermodynamic 

 function^.^,^ Instead, the e f f e c t  of var iable  temperature i n  Hudleston's 

equation of s t a t e  w i l l  be included by a phenomenological. method described 

i n  t h e  generdl case by Gilvarry,16~17 t o  y i e l d  a result c lose ly  similar 

t o  t h a t  already appearing i n  the l i terature fo r  Hudleston's equation. 

Define a dimensionless parameter 7 by 

7 = Ka-l(&/&)T (28)  

where a i s  the volumetric coeff ic ient  of thermal expansion. I n  view 

of the thermodynamic i d e n t i t 3 5  

(25) F. Birch, J. Geophys. Eies., - 7 7 ,  227 (1352). 

VU = -K-l(aK/aT)p (29) 

it i s  c l e a r  t h a t  7a i s  the temperature coeff ic ient  of t h e  bulk modulus 

a t  constant pressure. Let yo and aO denote values of q and a, 



(30 )  

f o r  a r b i t r a r y  temperature T. 

r e c t i o n  f a c t o r  appearing in ec,. 17 becomes 

The argmeiit of t h e  exponential i n  the cor- 

d i r e c t l y  from Gi lvar ry ' s  results. 

The form of Hudleston's equation for var iab le  temperature used by 

2 3 4 Bett ,  by Bet t ,  Hayes, and Newitt, aqd by B e t t ,  Weale, and Newitt cor- 

responds e s s e n t i a l l y  t o  eq. 30 when mult ipl ied by an exponential w i t h  the  

argument 31, but with the s a l i e n t  omission of the exponential fac tor  

depending on the i n t e g r a l  of voao with respect  t o  temperature. A s  

shown by Gilvarry," t h i s  correction f a c t o r  i s  e s s e n t i a l  f o r  a correct  

r e s u l t .  

as well  as the volume must be corrected for a change i n  temperature. 

However, i t  can be noted t h a t  the correction fac tor  on the volume depend- 

ing on the i n t e g r a l  of aO 

ey. 30 a t  low pressure over the correction t o  the  bulk modulus represented 

These p r i o r  discussions neglected the  f e c t  t h a t  the bulk m a d u s  

with respect t o  temperature i s  dominant i n  
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". L.- t.-ponc-tlal depc-ndlr,; 3s CL ~ L C  " _ _ _  - -pi 31 ~ 

ze:qerature. A; a conseqacnce, oi:L;i ZL ey be 

r;uC:icient for adequate eccui-scg- 5-2 ::-e c;e=tatlofi Of the far p. 

v 

\T&lue ;j- ,~ 

In the integrals appearing 1: ;?XSC d::pxszions, the integra.-ds a. 

and qoao must correspond to zero \;;~ssuL~.; :I. this case, eq. 30 as i-c 

stmds is thermodynamically correcc t:-i~~~t;:l term of order P/&, as 

parameter of smallness. 

point, the integrands at this point mst be understood as proportional 

to delta functions, with the coe-'"' Ai-LAent~ -; c:-asen to yield the proper change 

in volume and discontinuity in buik riodulus lor melLing at the temperature 

of fusion in question. Thus, t nay correspond to absolute zero, and T 

may represent a terrrperature correspocding to the liquid phase. 

solid with a normal fusion curve, the nethod of determining values 

and ~ o c ; o  

temperatures above the fusion value f o r  a particular pressure has been 

discussed by Gilvarry. 

be replaced by linear forms when the range of integration f r o x  t to T 

is sufficiently small and does not include the fusion point. 

the volume V,,T and bulk modulus &,T at zero pressure but arbitrary 

temperature can be written as 

16 - 
II the paths ai' integration cross the fusion 

For a 

a. 

of a and ?a, respectively, to correspond to zero pressure for 

16 It is clear that the exponentials appearing can 

In this case, 

V0,T = Vo,t[l + ao(T - t)1 (321 

(33 )  G,T = Ko,t[l - qOao(T - t)l 

respectively. 

TO correspond to the two sides of the equation 

If experimental data for different isotherms are plotted 
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(26) J. J. Gilvarry, Fhys. Iiev., :S, ?C, (~356). 

but tne author i s  unaware o l  si .  LLL- cGr-;ji-z;lox . -  ?or l iqu ids .  

One riay note t h a t  the derivation o l  tLie argumenL 31 of the exponen- 

tial makes use of zhe usual assur~ .c lon  t h a t  the Griineisen parameter i s  

independent of temperature. l7 TO check consistency, one can apply eq. 19 

t o  the  generalized form of Hudleston's equation, including the  e f f e c t  of 

temperature. One obtains 

l i m  7 ( ~ )  = yo 
P+O 

( 3 5 )  

as t h e  constant l imi t ing  value o f  y ( T )  a t  zero pressure, independently 

of the  absolute temperature T. I n  general, therefore,  the exponential 

correct ion fac tor  with argument 31 aS applied t o  eq. 30, o r  the eqonen-  

t i a l  f a c t o r  i n  Hudleston's eq. 1, represents the  e f f e c t  of anharmonicity 

on the  pressure i n  the neighborhood of the  minimum i n  the Helmholtz f r e e  

energy a t  a r b i t r a r y  f ixed  Further,  comparison of eq. 23 

eq. 30 o r  the following eq. 37 shows a s l i g h t  temperature s e n s i t i v i t y  

depending on ao(T - t)  , which i s  cancelled a t  zero pressure by a term 

depencing on V, as V = Vo[l -t- a o ( T  - t ) ]  i n  t h i s  limit. This d i f f i c u l t y  

i n  the  case of Birch 's  equation has been discussed elsewhere by Gilvarry.17 
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I n  eq. 23 t h a t  

the  IIuSeston paraneter E <;?at 03 tenlperature. This 

conclusion i s  in accord : 

of 3 e t t ,  Eayes, and 

YO 
for ar!y isotherm. It foilG:.:; F1-a;;: tlie ~~: :~ ' ;~ ;~~; ;  0;' 

A:& date of Hudleston,' of Be t t J2  

~LL,': -YE CY iett, !;ede, and Newitt.4 

The foregoing arc:u::,ent presuppses  that  the g r h e i s e n  pararrieter i s  

independent of texperature,  on GrCselsen's post .Late  that the  l a t t i c e  fre- 

quencies of a s o l i d  a r e  a funct ion only  of the  v o l u r ~ e . ~ , ~  

t a l  evidence on t h i s  po in t  i s  conf l ic t ing  for low temperatures (approaching 

absolute  zero),16 bu t  the bulk of the data f o r  s o l i d s  at  normal tempera- 

t u r e  and higher do seem t o  ind ica t e  t h a t  

t ~ r e , * ~ , ~ ~  a t  l e a s t  approximately. 

c h a r a c t e r i s t i c  frequencies of a l i q u l d  a r e  a funct ion mainly of the  vol- 

ume (near  the  s o l i d i f i c a t i o n  curve in '  any event) , one concludes t h a t  

i s  an approximate constant with respect  t o  temperature. 

e i t h e r  a s o l i d  o r  l i qu id ,  therefore ,  one obtains  the  experimentally v e r i -  

f i e d  conclusion t h a t  t he  parameter 

2s a. cnnst.amt. independently of the  pa r t i cu la r  isotherm considered. 

The form 26 of Hudleston's equation as general ized t o  include 

The experimen- 

y i s  independent of tempera- 

On a similar assumption t h a t  t he  

7 

I n  the case of 

B i n  Hudleston's equation of s ta te  

coupling can be extended e a s i l y  t o  include the  e f f e c t  of var iab le  temper- 

a tu re .  For the  dominant contribution t o  the  pressure,  one obtains  
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independent 01’ -b :c 2a-ticL.iLA- isotiiern, a t  l e a s t  i f  the par aine ‘t e r  

S i t  i s  r e s t r i c t e d  t o  the range 0:’ s m l i  pressure i n  the  neighborhood of I 

the  rxininm i n  Helr iol tz  lree C L L ~ - : ~  i’or t’ne ked;.. 

It has been noted t n a t  GL? ?--essure as given by eq. 14 and 25 i n  

the case of zero temperature, wit‘nou?; the correc’tion f a c t o r  15, yie lds  

a vanishing contribution t o  the GrGneisen paraxeter i n  the l i m i t  P + 0,  

since i t  represents the harmonic par t  of zhe pressure. One can show 

t h a t  a s imilar  r e s u l t  holds for eq. 30 or eq. 37 with neglect of the 

correct ion fac tor  depending on the argur;;ent 31, for the  case of f i n i t e  

texperature i n  the  l i m i t  of zero pressure. 

e n t i r e l y  from the presence of the  exponential fac tor .  

T’nus, the limit 35 arises 

Hence, i n  view of 

GrEneisen’s l a w  of eq. 27, the therrnal expansion c o e f f i c i e n t  a. i n  

eq. 30 and 37 vanishes i f  

mately consis tent  a t  f i n i t e  tenrperature with the requirement t h a t  an 

i d e a l  harmonic body display no thermal. expansion.“ 

yo  vanishes, and the results are approxi- 

-7 

CONPARISON WITH EXPERINEXT 

A check on the bas ic  v a l i d i t y  of the  der ivat ion of Hudleston’s 

equation presented can be obtained by comparing values of the Grcneisen 

constant from eq. 22 with vdLues obtained by other  neans. For t h i s  
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-, C - T  

iG o-j;-Loi;..;.r I . -: - . -  
d&J y - "  - I 2 i l C r ,  c G - 

2,:tcn- *. . ~Lr-ce zcpi ica t lon  of <?-e C - r ~ c - -  

rriined the  values of tile E~fieszc_? sz:a:~:~:., <or l i _ : : ~ i c C  nercur;- j ; r  

arizlysis of coxpression ckte i; :. I' s. gi-essure range of' 1 t o  10 

kilobars, l o r  temperatares of' 0°C. an6 22°C. , and obtains 

corresponding value of y o  

t r e a t s  L and Lo as dixensiozless; it appecrs as the S r s t  e n t r y  i n  the 

l as t  coium o? Table I. T'e ;ecor,il entry i n  t h i s  c o l w i  w a s  obtained by 

appl icat ion of  G r k e i s e n ' s  Ir-7 L' e l .  27' t o  the s o l i d  a?; fusion.26 

Tina1 en t ry  corresponds t o  Gllvarry ' s re lat ion26 

B = 4.95. 

can be o'ovair-ed iroin eq. 23, s lnce L e t t  

The 

The 

( 38) - 1 nv 
7, - 2 9x12 -=- L 

for the  GrGneisen constant y, of a s o l l d  a t  fusion, where Km i s  the  

bulk modulus of the s o l i d  a t  melting, AV and L a r e  the  volume change and 

l a t e n t  neat of' fusion, respectively,  and q i s  a constant which does not 

d i f f e r  g r e a t l y  from unity.  The value' of y,  i n  eq. 38 has been corrected 

by the  subtract ive constant 1/3 from Kyat given originally,26 t o  corre- 

spond t o  eq. 19  for a model of independent bond o s c i l l a t o r s ,  r a t h e r  than 

t o  eq. 24 for the  Debye theory.18 

The last  two e n t r i e s  i n  the f i n a l  column of Table I correspond t o  

s o l i d  mercury a t  melting and hence t o  a temperature of - 3 8 . 9 O C . ,  whereas 

t h e  value obtained from eq. 23 re fers  t o  a temperature range from 0 t o  

2 2 O C .  However, the  results show tha t  extension of the  GrGneisen theory 

t o  l i q u i d s  y ie lds  a value of the  GrGneisen constant fo r  l i q u i d  mercury 

reasonably concordant with values for the s o l i d  a t  fusion. 



obtained from 

The v d u e s  of 

Table I within lirfiits 

pararreters of soli t is ,  

t ions  . 26 xoreover , 

which ai-? -*sasona5le l o r  2 

as o3talaeii lorox di2:'erent 

the very slow variatlor? of 

c o q a r i s o n  of Griineisen 

theore t ica l  determina- 

the G r b e i s e n  parameter 

with temperature apparent from Tz3le ii 5s consonant with the  observed 

i n s e a s i t i v i t y  t o  temperature of the i iuaes ton  parameter B. 

GrGneisen constants f o r  s o l i i s  can be determined from the  parameters 

a and b i n  the Bridgman equation of s t a t e  

(vo - v)/vo = a9 - 5F + " *  (40) 

On the b a s i s  of eq. 19, one has 

y o  = b/a2 - 1 

Experimentally, the coef f ic ien t  b i s  d i f f i c u l t  t o  determine accurately.  

Bet t .>  Hayes, and N e w i t t 3  have summarized the avai lable  data  on the 

Bridgman parameters of l i q u i d  mercury. From the  results of six inves t i -  

gat ions,  they f i n d  a mean value f o r  b which appears i n  the f i rs t  l i n e  

or' Table IiI, with the standard deviation shown. Relatively,  the  e r r o r  

i n  a i s  insignif icant .  The corresponding value of 7 with i t s  

standard deviation i s  shown i n  the l as t  column of the table ,  and one sees 

0 
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- ' -1-; 1 - z 1, J -  -bJLe i 5- 

_ -  ilzyes, a ~ &  - . e . ~ ~ i t t  ( ly ing  G~,;-L: 

deviat ioa)  were igcore u ' x  ztc-r. L ~ - C  deviation of the 

remaLning t'nrec were co:.puccL-, LL ;rilcl-, L _   it .;iio*<L: Ln tile second 

line. One sees thac the ccrresponti2ng vziLl;e of y o  i n  tlie l a s c  c o l m  

agrees reasonably, wit'nin t h e  l l r i c ;  l o r  the ; ~ ~ , ? a r d  deviat ioc shown, 

with the r e s u l t  of Ta-Dle I. 

Tne nunierical agreexent o>Ca<i:ed I s  b;' no r e a s  perfecc. On the 

other  hand, it i s  e s s e n t i a l  t o  :ezlize cnat exact agreenent between 7 

frorn GrEneisen's l a w  and fron eq. 1-9 i s  not dernanded by theory, because 

of t h e  e f f e c t  of the  simplifying assumptlons which en ter  the argument.6 

Equations 23 and 41  ac tua l ly  y i e l d  average G r k e i s e n  parameters, s ince 

the corresponding equations of staLe a r e  f i t t e d  t o  data covering a f i n i t e  

range of pressure.  As such, the corresponding values of yo tend t o  

exceed values infer red  from data i n  the  neighborhood of the energy mini- 

mum o r  from GrEneisen's l a w ,  consonantly with a behavior noted elsewhere.21 

CORRESPONDENCE OF LIQUID AND SOLID STATES 

I n  t h i s  sect ion,  an e x p l i c i t  demonstration of the close correspondence 

between equatiuris of state f ~ r  the s o l i d  and l i q u i d  near the  melting 

poin t  w i l l  be given. 

From the r e s u l t s  of B e t t ,  of B e t t ,  Hayes, and Newitt, and of B e t t ,  

Weale, and Newitt, i t  i s  c lear  that  l i q u i d  mercury obeys Hudleston's 

equation over the temperature range 0 - 2 2 O C . ,  which i s  n o t  far removed 

from the absolute temperature of s o l i d i f i c a t i o n .  Although experimental 



gcnerh l  degree 0.' correspondence kcwee:-, -eke equations of  s t a t e  of t'ne 

t'ne t h e o r e t i c z l  and e x p e r k e n t a l  r e s u l t s  ;or the  pressure vs. volume i n  - 
the  s o l i d  a l k a l i  metals. 

The equations of s t a t e  for the a l k a l i  metals i n  the s o l i d  phase 

have been calculated by i3ardeen f rom quanta7 rcechanics by t'ne Wigner- 

S e i t z  method under cer ta in  approxir:.ations.2" 

(28) J. Bardeen, 2 .  Chern. Pnys., - 6, 372 (1938). 

X i s  r e s u l t  for the  dominant 

contr ibut ion t o  the  pressure i s  

P = 3Ko[(v,/v) * I 3  - (vo/v)4'31 (42) 

requi r ing  a m l t i p l i c a t i v e  correction a t  the higher compressions given by 

1 + <iivo/"v' j l /3 - A J  1 1  (43) 

with 5 a constant. Bardeen compared h i s  results with experimental data 

of Sridgman for C s ,  Rb, K, Na, and L i  extending t o  pressures of 45 kilo- 

bars  and corresponding t o  room temperature. Excellent agreement w a s  found, 

i n  general_, and the  e f f e c t  of the correct ion 43 w a s  found t o  be small. 
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(44) 

sure, ;qlti?out the exponentia; c~rr?~ti~:> lac-cor. Now, &, ana Vo repre-  

s e n t  tile Sulk xodulus and voiurnc tt zero 1' L - 9 - r .  isailre, respect ively,  and the  

d iscont inui ty  i n  these paraxete;-s L..~ tiii l i l s ion  poin t  i s  small r e l a t i v e  

t o  t h e i r  values. Thus, Sardeen's esuation bpplied t o  a s o l i d  alirali 

n e t a l  near the fusion poin t  dlYfers Iror.Hudleston's equation f o r  a 

l i q u i d  a l k a l i  metal near t he  c r y s t a l l i z a t i o n  poin t  only by the f a c t o r  

Vo/V, i n  which Vo 

l i q u i d  as a f i r s t  approximation. 

can be evaluated i n d i f f e r e n t l y  f o r  the s o l i d  or 
-- Lowever, Vo/V can be expanded i n  a 

Taylor s e r i e s  as 

vo/v = 1 + P/Kg 4- * * *  (45) 

from the  d e f i n i t i o n  of the  bulk mo6ulus. For the  a l k a l i  metals at  melt- 

ing,  t he  values of & for the  s o l l d  phase range from &lo4 t o  1X105 

bar frnr C s  t o  L i ,  r e ~ p e c t i v e l y . ~ ~ , ~ '  Hence, P/K, does not  exceed 

(23) J. J. Gilvarry,  J. Chern. Phys., 23, - 1925 (1955). 
~~ ~ 

about 107: f o r  any a l k a l i  metal, foi- P up t o  1 kilobar.  Accordingly, 

on the  assunptiori t h a t  Hudleston's equation i s  va l id  f o r  the l i q u i d  

a l k a l i  metals near the  sol idif icaLion point ,  i t  d i f f e r s  from the  quantum 

mechanical result for t he  so l id s  near fusion, i n  ana ly t i c  form and value, 



i 

expression yields  b e t t e r  agreexent with experimental da ta  for the  a l k a l i  

m e t a l s  a t  the very highest  pressures avai lable  (about 0.1 megabar) than 

does Sardeen's result. 

DISCS'SSION f i l l )  CONCLUSIONS 

It can be noted that  all the  equations of s t a t e  considered show a 

c e r t a i n  s i x i l a r i t y .  Thus, Eu&Lesr;on's equation, t h i s  r e s u l t  as general- 

i zed  here t o  apply t o  coupled vibrations,  and t h e  Bardeen and Birch equa- 

t i o n s  all have a dominant binoroial i n  (Vo/V)1'3 as common elements i n  

t h e i r  ana ly t ic  form. A l l  the  equations require  modification of the dom- 

i n a n t  binomial by a correc-cion f a c t s r  :&ich becomes r e l a t i v e l y  important 

only fo r  the  higher compressions. It i s  worthy of note t h a t  the  dominant 

binornidl i n  each case can be reduced f o r  pressures approaching zero t o  

t h e  form of eq. 25. This equation of state corresponds t o  an i d e a l  har- 

nonic body on t h e  Debye theory, o r  t o  the r e s u l t  of Mmnaghan's l i n e a r  

theory of f i n i t e  s t r a i n .  
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(46) - - 3 PV = s;,Lin i - 1, spot 
3 2 - 

of' ciuantuz r:ieck',arLcs, .&ere 

p o t e n t i a l  ezergtes of t h e  e l e c r z n s  of 52 ztox, respectrvely ( t h e  thermal 

notion 05 t h e  nucleus i s  ignoree; .  Consieer the i i r A t  ol' very high pres- 

sure  tr'ncre the electron d l s t r i b u t l o n  corresponds t o  a degenerate Fermi- 

Dlrac gas. 

energies of an electron vary as l/r' 2nd l /r ,  respectively,  i n  terms of 

s o m  radius r of the atom.32 Inser t ing  t h i s  funct ional  dependence i n t o  

E ; ~ ~ c  arid E, Ere tiis t o t e l  kineuic and 1,G.G 

I n  t h i s  l i m i t  of m a l i  volurie, the k i n e t i c  ,and p o t e n t i a l  

(32) Z. 2. Gilvarry, Phys. Rev., - 96, 934 (1954). 

eq. 46, one obtains 
(47) -5/3 - bV-"/3 P = a V  

where a and b a r e  pos i t ive  constants. This r e s u l t  has p r e c i s e l y  the 

a n a l y t i c  form of the dominant contribution of eq. 42 t o  the  pressure i n  

Bardeen' s equation. 

Evduat ing  the  constants a and b i n  eq. 47 by requiriiig tkt t h e  

pressure vanish and the bulk modulus have the normal value 

volume equals 

t ion .  

quantum theory of BoFz f o r  the hydrogen atom (which i s  a l k a l i - l i k e ) ,  by 

K, when the  

Vo, one obtains a h e u r i s t i c  derivation of Bardeen's equa- 

I n  a similar manner one can derive the equation f r o m t h e  old 



, . a -  
* 

I *  

f 

l o s e  v a l i d i t y ,  s ince the doirsnant apacei:tiziL jehavior of Xudies ton ' s 

expression at high pressure does L G ~  C G h C L i k  with Lhe r e s u l t  of eq. 47 

aemznded by quantum s t a t i s t i c a l  xechanics, as i r f e r r e d  from the  Thomas- 

Fer,ni s t a t i s t i c a l  atom model. Sence, the replacement of a l i n e a r  form 

involving the Griineisen constant by an exponential coinciding with i t  

tnrougn l i n e a r  terms, which i s  the  crux rrzthematicaliy of the der ivat ion 

of Hudleston's equation given here, can be v a l i d  only through an i n t e r -  

xea ia te  range of pressure. Teller3" has hypothesized t h a t  the  pressure 

(34) E. Te l le r ,  Trans. Arrierican Ge'o2hys. Union, National Research Council - 
Rational Academy of Sciences, 1-937, p. 54. 

~~ 

i n  t h i s  intermediate region should vary exponentially with the change iil 

volume; h i s  argument i s  based on the exponential decrease of the  e lec t ron  

dens i ty  i n  the outermost p a r t  of an atom o r  molecule. 

s t o n  was reached by L e ~ i t t ~ ~  on purely empirical grounds. 

(jj) L. S. Levi t t ,  J. Phys. Chea., 58, 573 (1954). . 

A siniilar c o n c h -  

For low pressure,  

- 
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-I 

4 4 +  

:’3 a- 

* 

. -  
i . -c  _ _  coupled. 

cOupli:li: IS~G Z C C O C I L  zz 11 + _ _  c;.a,c;veil thta, 

ncted t k a t  t1:e 

D?>;rc ~ ~ 2 r - l  y ie lds  b e t t e r  a;;ree.,.c.;-u vlir 

1st~: t,;m does the  r e s u l t  19 i’G-* L ~ L L ~ ~ E  

:-!:en over 13 elenents i n  the :S--CI szLze. 

L.zs iy-Terred z’ro;.? Gr;;ielsen’ s 

osc i l lh to i*s ,  i‘i)r an averege 

18 - .  

It i s  c l ea r  Yrom The prcscr-c r ? s u l ~ s  <kit -- zui lescon’s  equation for 

a. l i q u i d  follows d i r e c t l y  f r ~ . ~  VL ZOLTXL exLension t o  t h i s  case of t h e  

Griineisen theory of characxezlszlc vibrazlons of a so l id .  The Theory 

y i e lds  an immediate explanaLion of the  1a.c:~ oI” texperature dependence 

observed for the  Rudleston parameter 

o ther  phys ica l  parameters of the  l iqu id .  

c ides  with t h a t  adopted by Nott i n  t r e a t i n g  the  e l e c t r i c a l  conductivity,  

and by Andrade i n  d i scussbg  t’ne v iscos i ty  of l i q u i d s .  

bas i c  Ldea i s  t h a t  a l i q u i d  near c r y s t a l l i z a t i o n  i s  far more similar t o  

a s o i i d  than i t  i s  t o  a gas. 

t r e a t e d  here  l i e s  i n  yielding e x p l i c i t  i f  only approximately quant i ta-  

t i v e  r e s u l t s  i n  areas  where appl ica t ion  of iiie geacrS. mPthods of Born 

and Green and of Kirkwood i s  f a r  too d i f f i c u l t .  

B, ana cor re la tes  i t s  value w i t h  

I n  pr inc ip le ,  the  model coin- 

A s  such, the 

The merit  of simple models l i k e  the  one 
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2.gb 

0 

10 

20 

7.3556 1.8145 2.550 0.1k05 

7.3592 1.8131 2.520 0. 1401 

7.3882 1.8118 2.491 * 0.1-397 
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~~ 

T a b l e  III: Values of G r h e i s e n  Constants Tor Liquid Mercury, From 

B r  i dgnan Par m e t e r  s 

Eliean 

bxl0lo 
a 

bar'2 

1.10 i 0.70 

0.83 ? 0.31 

*lo6 
u 

bar'' 

3.91 ? 0.10 

3.91 2 0.10 

70 

6.3 i 5.0 

4.4 t 2.0 

- b iexperature ,  25OC. Temperature, 2OoC. 


